
lizard-structure Documentation
Release 0.2.dev0

Nelen en Schuurmans

December 24, 2012

CONTENTS

1 The Lizard Portal API 3
1.1 Portal . 3
1.2 Application Screen . 4
1.3 Applications . 5

2 The Lizard Datasource REST API 7

3 Introducing the four core Lizard concepts 9
3.1 Data source . 9
3.2 Layer tree . 10
3.3 Layer . 10
3.4 Feature . 10

4 Django base views for implementing your API 11
4.1 Data source view . 11
4.2 TODO: Layer tree view . 12
4.3 TODO: Layer view . 12
4.4 TODO: Feature view . 12

5 Item definitions: what key/value pairs to expect 13
5.1 Layer tree . 13
5.2 Heading in a menu . 13
5.3 Layer (workspace acceptable) in a menu . 14

6 Helper functions and base classes 15
6.1 Helper base view . 15
6.2 Base class for building item definitions . 15
6.3 Helper function for generating item definition documentation 16

7 Project documentation 17
Lizard-structure project documentation . 17
Changelog of lizard-structure . 17
Credits . 18

Python Module Index 19

i

ii

lizard-structure Documentation, Release 0.2.dev0

Tagline of this app: structure of Lizard, defined and documented in a REST interface.

Lizard is a framework for showing water-related information in a web interface. We build most of
what’s now Lizard in the Python web framework Django. We’re now separating the various bits and
pieces more formally with a REST web API.

A REST API means you can tie in easier into Lizard with your own software instead of buying into
Lizard’s whole Python and Django stack.

Lizard-structure provides the documentation on the API. It also provides base view classes for Django to
make it very easy to support the API with all the existing Django Lizard apps. The main goal however
is documentation.

Here is the table of contents:

CONTENTS 1

http://lizard.org
http://python.org
http://djangoproject.com
https://en.wikipedia.org/wiki/Representational_state_transfer

lizard-structure Documentation, Release 0.2.dev0

2 CONTENTS

CHAPTER

ONE

INTRODUCING THE FOUR CORE
LIZARD CONCEPTS

Note: Warning, this is work in progress. Even though there currently are four levels, there’s a big
chance that something is missing. It is very likely that a “FilterFolder” or “FilterLayer” or something
like that will be added.

There are four core concepts in Lizard’s structure:

Data source

Lizard can connect to many kinds of data. A Data source provides such a connection.

Layer tree

Within an Data source, there will be one or more basic groups of data. Every group of data
is what we call a Layer tree.

Layer

Every Layer tree has multiple layers in some sort of structure. A Layer is most often a map
layer, but it doesn’t have to be.

Feature

A Layer consists of features. A map layer might show water level measurement points:
every one of those is a Feature.

Note: There are four levels. No more. That’s Lizard’s structure! You could call it Lizard’s world
view. Most of what we encountered in the Lizard websites of the last couple of years fits this structure.
And if you need something extra special, you can just create a regular Lizard Django application and
you’ll have all the freedom to do weird things that you can wish for.

1.1 Data source

A main Lizard characteristic is that it can show data from many different sources. (With “show” we
can mean quite elaborate web interfaces, btw.) For every data source, there is a separate Lizard Django
application (currently). One to read FEWS data from a database. Another to read it from a JDBC
coupling. One to link to geoserver WMS layers. Another to show river dike calculations.

3

lizard-structure Documentation, Release 0.2.dev0

So in the end, if a Lizard website connects to you via the lizard-structure API, Lizard connects with you
as a data source.

You, as a data surce, are the starting point for Lizard to talk to you. You’ll give lizard a list of layer trees
which it can display in its interface, for instance.

1.2 Layer tree

A layer tree is a large-scale grouping of the data available in an Data source. Do not have too many
of these. As an example: if your data source provides water level measurements, a good layer tree
level might be the water board or municipality or whatever you have as top-level customer. So every
municipality becomes a Layer tree.

The goal you need to keep in mind here is that a Layer tree often translates into a separate page in the
Lizard web interface. If that is what you want: fine. If not: you need to re-think what you’re calling a
layer tree.

1.3 Layer

A layer is best understood as simply a map layer. One of the map layers you place over a google or
openstreetmap base map. It doesn’t really matter whether it is a WMS layer or geojson or even a simple
non-map list of items: for the concept you simply need to think “map layer” and you’ve got the correct
mental picture.

1.4 Feature

If a Layer is basically a map layer, a Feature is an item on that map layer. A river, a dike segment, a
water level measurement. A feature is the lowest useful level of information.

The best way to think about a feature is of something that you can click on on a map. You click it and
you get a graph of the data. Or a table with more information. Or a PDF.

And in case the Layer wasn’t a map layer but just a list of features, it still holds true that a feature is
something with a table, graph or PDF. In this case it simply is one of the items in that list.

4 Chapter 1. Introducing the four core Lizard concepts

CHAPTER

TWO

DJANGO BASE VIEWS FOR
IMPLEMENTING YOUR API

lizard_structure.views provides base views for each of the core concepts defined in Introduc-
ing the four core Lizard concepts. The basic premise is that lizard-structure only shows a data source’s
structure. There are no edit actions, so no POST/PUT/DELETE: only GET.

For the Django API we use Django REST framework.

Every view has a doctring that can mostly be used as-is by the subclasses that implement the actual
functionality. The docstring is rendered by Django REST framework in the html API interface, so the
view’s docstring is the most important information your API user is going to see. The base views’
docstring must be really clear and concise!

You normally do not have to implement any .get() method on a view, that is all taken care of. Every
view tells you which methods you have to fill in to get the base view working with your data.

2.1 Data source view

Base view for a Data source.

class lizard_structure.views.DataSourceView(**kwargs)
Information about the data source itself and its list of layer trees.

Use this to discover the layer trees you can show in your user interface. The result is a dictionary
with the following items:

about_ourselves Metadata about ourselves, like the software version that generated it. Do not
depend on the actual items in here, just display them when desired as background informa-
tion.

layer_trees The list of available layer trees. A layer tree is a collection of layers you can show
on a map or in an overview.

There is one method you always have to implement:

layer_trees()
Return list of layer trees.

Overwrite this method in your subclass and return a list of
lizard_structure.items.LayerTreeItem instances you create from what-
ever constitutes a layer tree in your own models. To give you an idea, here are some
example layer trees:

5

http://django-rest-framework.org/

lizard-structure Documentation, Release 0.2.dev0

•Categories in lizard-wms/lizard-maptree.

•FEWS connections in lizard-fewsjdbc.

If you want to return more information about ourselves than the default:

about_ourselves()
Return metadata about ourselves.

The result should be a flat dictionary, so only key/value pairs. By default “generator” is re-
turned with our package name and version as returned by our_name_and_version().

Normally, you should not have to modify or implement the other methods.

get(request, format=None)
Return about_ourselves and layer trees as REST response.

our_name_and_version()
Return automatically detected name and version number of our package.

The default should be OK in most cases.

2.2 TODO: Layer tree view

Base view for a Layer tree.

class lizard_structure.views.LayerTreeView(**kwargs)
Information about the layer tree and its list of layers.

2.3 TODO: Layer view

Base view for a Layer.

class lizard_structure.views.LayerView(**kwargs)
Information about the layer and its list of features.

2.4 TODO: Feature view

Base view for a Feature.

class lizard_structure.views.FeatureView(**kwargs)
Information about the feature and most importantly its representations.

6 Chapter 2. Django base views for implementing your API

CHAPTER

THREE

ITEM DEFINITIONS: WHAT
KEY/VALUE PAIRS TO EXPECT

lizard_structure.items provides item definitions. An item definition is a formal specification
of what kinds of key/value pairs you can expect in a JSON object (or Python dictionary) for such diverse
items such as a layer, a menu item, a feature, a data source.

Technically, an item definition is nothing but a Python class that returns a dictionary. It is implemented
as a class for the following reasons:

• To make sure you comply to the specification. No undefined keys, no missing mandatory keys.

• To allow for default values.

• To make sure we can generate always-correct always-up-to-date documentation.

3.1 Layer tree

class lizard_structure.items.LayerTreeItem(**kwargs)
Item definition for layertrees

Available values

url Optional. (Default value: None).

name Name of the item (Default value: None).

description

Description of the item, perhaps shown when hovering above it. HTML tags are
allowed so you can add links or definition links.

(Default value: None).

3.2 Heading in a menu

class lizard_structure.items.HeadingItem(**kwargs)
Wrapper/interface for heading objects in a LayerTree/menu.

Fixed values:

menu_type (Fixed value: u’heading’)

7

lizard-structure Documentation, Release 0.2.dev0

Available values

klass Optional. (Default value: None).

extra_data Optional. (Default value: None).

heading_level Optional. (Default value: 1).

name Name of the item (Default value: None).

description

Description of the item, perhaps shown when hovering above it. HTML tags are
allowed so you can add links or definition links.

(Default value: None).

3.3 Layer (workspace acceptable) in a menu

class lizard_structure.items.LayerItem(**kwargs)
Wrapper/interface for layer/acceptable objects in a LayerTree/menu.

Fixed values:

menu_type (Fixed value: u’workspace_acceptable’)

Available values

wms_params Optional. (Default value: None).

wms_options Optional. (Default value: None).

name Name of the item (Default value: None).

wms_url Optional. (Default value: None).

description

Description of the item, perhaps shown when hovering above it. HTML tags are
allowed so you can add links or definition links.

(Default value: None).

8 Chapter 3. Item definitions: what key/value pairs to expect

CHAPTER

FOUR

HELPER FUNCTIONS AND BASE
CLASSES

Both lizard_structure.items and lizard_structure.views have helper functions and
base classes. We document them here to keep the view and the item definitions documentation clean.

4.1 Helper base view

class lizard_structure.views.BaseAPIView(**kwargs)
Base view that provides custom docstring rendering.

You should not have to subclass from BaseAPIView yourself, it is only used as a base for the
other ones. The custom docstring handling happens by overwriting the get_description()
expected by Django Rest framework.

get_description(html=False)
Return the description, optionally as html.

4.2 Base class for building item definitions

class lizard_structure.items.BaseItem(**kwargs)
Base class for the other items.

Flexible implementation so that we only have to specify the fixed and the default values (as dic-
tionaries).

•Fixed values cannot be set with a keyword argument.

•Default arguments (None is fine as value, btw) can be set using keyword arguments, other-
wise they get their default values.

•Keys with None values are omitted from the resulting dictionary returned by to_api().

to_api()
Return our internal dictionary, but strip it of None values first.

9

lizard-structure Documentation, Release 0.2.dev0

4.3 Helper function for generating item definition documentation

lizard_structure.items.generate_docstring(name, bases, attrs)
Generate a docstring based on the class’s defaults/fixed attributes.

Use this function as a metaclass by adding __metaclass__ = generate_docstring to
every individual subclass of BaseItem.

10 Chapter 4. Helper functions and base classes

CHAPTER

FIVE

PROJECT DOCUMENTATION

Lizard-structure project documentation

Tagline of this app: structure of Lizard, defined and documented in a REST interface.

Most important project links

• Code is on github: https://github.com/lizardsystem/lizard-structure

• Documentation on readthedocs.org: https://lizard-structure.readthedocs.org/

• Tested on travis: https://travis-ci.org/lizardsystem/lizard-structure .

• Installable via pypi: http://pypi.python.org/pypi/lizard-structure .

Changelog of lizard-structure

0.2 (unreleased)

• Renamed “project” to “layer tree” because it is clearer.

• Added “item definitions” to properly document and specify items such as menu headers and
projects. Their end result is a dictionary that will be returned as json by the API.

• Added lots of documentation, including documentation generated from the docstrings. The doc-
string documentation is carefully managed so that the documentation as a whole remains clear
and logical to read.

• Renamed “application” to “data source” as “application” looks too much like “Django applica-
tion”. Inside Lizard, the icons in lizard-ui’s interface are also called “application icons”, so we
don’t use this overloaded term here.

• Using version from setup.py in the sphinx documentation.

0.1 (2012-12-05)

• Documented the four core Lizard concepts. [reinout]

• Set up documentation generation at https://lizard-structure.readthedocs.org/ . [reinout]

11

https://travis-ci.org/lizardsystem/lizard-structure
https://github.com/lizardsystem/lizard-structure
https://lizard-structure.readthedocs.org/
https://travis-ci.org/lizardsystem/lizard-structure
http://pypi.python.org/pypi/lizard-structure
https://lizard-structure.readthedocs.org/

lizard-structure Documentation, Release 0.2.dev0

• Set up testing on travis: https://travis-ci.org/lizardsystem/lizard-structure . [reinout]

• Removed lizard-ui dependency. [reinout]

• Initial project structure created with nensskel 1.30.dev0. [reinout]

Credits

• Reinout van Rees started this library.

12 Chapter 5. Project documentation

https://travis-ci.org/lizardsystem/lizard-structure

PYTHON MODULE INDEX

l
lizard_structure.items, 13
lizard_structure.views, 11

13

	The Lizard Portal API
	Portal
	Application Screen
	Applications

	The Lizard Datasource REST API
	Introducing the four core Lizard concepts
	Data source
	Layer tree
	Layer
	Feature

	Django base views for implementing your API
	Data source view
	TODO: Layer tree view
	TODO: Layer view
	TODO: Feature view

	Item definitions: what key/value pairs to expect
	Layer tree
	Heading in a menu
	Layer (workspace acceptable) in a menu

	Helper functions and base classes
	Helper base view
	Base class for building item definitions
	Helper function for generating item definition documentation

	Project documentation
	Lizard-structure project documentation
	Changelog of lizard-structure
	Credits

	Python Module Index

