

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	lizard-structure 0.2.dev0 documentation

Lizard-structure: The Lizard api

Tagline of this app: structure of Lizard, defined and documented in a REST
interface.

Lizard [http://lizard.org] is a framework for showing water-related
information in a web interface. We build most of what’s now Lizard in the
Python [http://python.org] web framework Django [http://djangoproject.com]. We’re now separating the various bits and
pieces more formally with a REST [https://en.wikipedia.org/wiki/Representational_state_transfer] web
API.

A REST API means you can tie in easier into Lizard with your own software
instead of buying into Lizard’s whole Python and Django stack.

Lizard-structure provides the documentation on the API. It also provides base
view classes for Django to make it very easy to support the API with all the
existing Django Lizard apps. The main goal however is documentation.

Here is the table of contents:

	Introducing the four core Lizard concepts
	Data source

	Layer tree

	Layer

	Feature

	Django base views for implementing your API
	Data source view

	TODO: Layer tree view

	TODO: Layer view

	TODO: Feature view

	Item definitions: what key/value pairs to expect
	Layer tree

	Heading in a menu

	Layer (workspace acceptable) in a menu

	Helper functions and base classes
	Helper base view

	Base class for building item definitions

	Helper function for generating item definition documentation

	Project documentation
	Lizard-structure project documentation

	Changelog of lizard-structure

	Credits

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Introducing the four core Lizard concepts

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lizard-structure 0.2.dev0 documentation

Introducing the four core Lizard concepts

Note

Warning, this is work in progress. Even though there currently are four
levels, there’s a big chance that something is missing. It is very likely
that a “FilterFolder” or “FilterLayer” or something like that will be
added.

There are four core concepts in Lizard’s structure:

Data source

Lizard can connect to many kinds of data. A Data source provides
such a connection.

Layer tree

Within an Data source, there will be one or more basic groups of
data. Every group of data is what we call a Layer tree.

Layer

Every Layer tree has multiple layers in some sort of
structure. A Layer is most often a map layer, but it doesn’t have
to be.

Feature

A Layer consists of features. A map layer might show water
level measurement points: every one of those is a Feature.

Note

There are four levels. No more. That’s Lizard’s structure! You could call
it Lizard’s world view. Most of what we encountered in the Lizard
websites of the last couple of years fits this structure. And if you need
something extra special, you can just create a regular Lizard Django
application and you’ll have all the freedom to do weird things that you can
wish for.

Data source

A main Lizard characteristic is that it can show data from many different
sources. (With “show” we can mean quite elaborate web interfaces, btw.) For
every data source, there is a separate Lizard Django application
(currently). One to read FEWS data from a database. Another to read it from a
JDBC coupling. One to link to geoserver WMS layers. Another to show river dike
calculations.

So in the end, if a Lizard website connects to you via the lizard-structure
API, Lizard connects with you as a data source.

You, as a data surce, are the starting point for Lizard to talk to you. You’ll
give lizard a list of layer trees which it can display in its interface, for
instance.

Layer tree

A layer tree is a large-scale grouping of the data available in an Data source. Do not have too many of these. As an example: if your data source
provides water level measurements, a good layer tree level might be the water
board or municipality or whatever you have as top-level customer. So every
municipality becomes a Layer tree.

The goal you need to keep in mind here is that a Layer tree often
translates into a separate page in the Lizard web interface. If that is what
you want: fine. If not: you need to re-think what you’re calling a layer tree.

Layer

A layer is best understood as simply a map layer. One of the map layers you
place over a google or openstreetmap base map. It doesn’t really matter
whether it is a WMS layer or geojson or even a simple non-map list of items:
for the concept you simply need to think “map layer” and you’ve got the
correct mental picture.

Feature

If a Layer is basically a map layer, a Feature is an item on
that map layer. A river, a dike segment, a water level measurement. A feature
is the lowest useful level of information.

The best way to think about a feature is of something that you can click on on
a map. You click it and you get a graph of the data. Or a table with more
information. Or a PDF.

And in case the Layer wasn’t a map layer but just a list of features,
it still holds true that a feature is something with a table, graph or PDF. In
this case it simply is one of the items in that list.

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Django base views for implementing your API

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lizard-structure 0.2.dev0 documentation

Django base views for implementing your API

lizard_structure.views provides base views for each of the core
concepts defined in Introducing the four core Lizard concepts. The basic premise is that
lizard-structure only shows a data source’s structure. There are no edit
actions, so no POST/PUT/DELETE: only GET.

For the Django API we use Django REST framework [http://django-rest-framework.org/].

Every view has a doctring that can mostly be used as-is by the subclasses that
implement the actual functionality. The docstring is rendered by Django REST
framework in the html API interface, so the view’s docstring is the most
important information your API user is going to see. The base views’ docstring
must be really clear and concise!

You normally do not have to implement any .get() method on a view, that is
all taken care of. Every view tells you which methods you have to fill in to
get the base view working with your data.

Data source view

Base view for a Data source.

	
class lizard_structure.views.DataSourceView(**kwargs)[source]

	Information about the data source itself and its list of layer trees.

Use this to discover the layer trees you can show in your user interface.
The result is a dictionary with the following items:

	about_ourselves

	Metadata about ourselves, like the software version that generated
it. Do not depend on the actual items in here, just display them when
desired as background information.

	layer_trees

	The list of available layer trees. A layer tree is a collection of
layers you can show on a map or in an overview.

There is one method you always have to implement:

	
layer_trees()

	Return list of layer trees.

Overwrite this method in your subclass and return a list of
lizard_structure.items.LayerTreeItem instances you create from
whatever constitutes a layer tree in your own models. To give you an
idea, here are some example layer trees:

	Categories in lizard-wms/lizard-maptree.

	FEWS connections in lizard-fewsjdbc.

If you want to return more information about ourselves than the default:

	
about_ourselves()[source]

	Return metadata about ourselves.

The result should be a flat dictionary, so only key/value pairs. By
default “generator” is returned with our package name and version as
returned by our_name_and_version().

Normally, you should not have to modify or implement the other methods.

	
get(request, format=None)[source]

	Return about_ourselves and layer trees as REST response.

	
our_name_and_version()[source]

	Return automatically detected name and version number of our package.

The default should be OK in most cases.

TODO: Layer tree view

Base view for a Layer tree.

	
class lizard_structure.views.LayerTreeView(**kwargs)

	Information about the layer tree and its list of layers.

TODO: Layer view

Base view for a Layer.

	
class lizard_structure.views.LayerView(**kwargs)[source]

	Information about the layer and its list of features.

TODO: Feature view

Base view for a Feature.

	
class lizard_structure.views.FeatureView(**kwargs)[source]

	Information about the feature and most importantly its representations.

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Item definitions: what key/value pairs to expect

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lizard-structure 0.2.dev0 documentation

Item definitions: what key/value pairs to expect

lizard_structure.items provides item definitions. An item definition is
a formal specification of what kinds of key/value pairs you can expect in a
JSON object (or Python dictionary) for such diverse items such as a layer, a
menu item, a feature, a data source.

Technically, an item definition is nothing but a Python class that returns a
dictionary. It is implemented as a class for the following reasons:

	To make sure you comply to the specification. No undefined keys, no missing
mandatory keys.

	To allow for default values.

	To make sure we can generate always-correct always-up-to-date documentation.

Layer tree

	
class lizard_structure.items.LayerTreeItem(**kwargs)

	Item definition for layertrees

Available values

	url

	Optional. (Default value: None).

	name

	Name of the item (Default value: None).

	description

	
Description of the item, perhaps shown when hovering
above it. HTML tags are allowed so you can add links or definition links.

(Default value: None).

Heading in a menu

	
class lizard_structure.items.HeadingItem(**kwargs)[source]

	Wrapper/interface for heading objects in a LayerTree/menu.

Fixed values:

	menu_type

	(Fixed value: u’heading’)

Available values

	klass

	Optional. (Default value: None).

	extra_data

	Optional. (Default value: None).

	heading_level

	Optional. (Default value: 1).

	name

	Name of the item (Default value: None).

	description

	
Description of the item, perhaps shown when hovering
above it. HTML tags are allowed so you can add links or definition links.

(Default value: None).

Layer (workspace acceptable) in a menu

	
class lizard_structure.items.LayerItem(**kwargs)[source]

	Wrapper/interface for layer/acceptable objects in a LayerTree/menu.

Fixed values:

	menu_type

	(Fixed value: u’workspace_acceptable’)

Available values

	wms_params

	Optional. (Default value: None).

	wms_options

	Optional. (Default value: None).

	name

	Name of the item (Default value: None).

	wms_url

	Optional. (Default value: None).

	description

	
Description of the item, perhaps shown when hovering
above it. HTML tags are allowed so you can add links or definition links.

(Default value: None).

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Helper functions and base classes

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	lizard-structure 0.2.dev0 documentation

Helper functions and base classes

Both lizard_structure.items and lizard_structure.views have
helper functions and base classes. We document them here to keep the view
and the item definitions documentation clean.

Helper base view

	
class lizard_structure.views.BaseAPIView(**kwargs)

	Base view that provides custom docstring rendering.

You should not have to subclass from BaseAPIView yourself, it is
only used as a base for the other ones. The custom docstring handling
happens by overwriting the get_description() expected by Django Rest
framework.

	
get_description(html=False)

	Return the description, optionally as html.

Base class for building item definitions

	
class lizard_structure.items.BaseItem(**kwargs)[source]

	Base class for the other items.

Flexible implementation so that we only have to specify the fixed and the
default values (as dictionaries).

	Fixed values cannot be set with a keyword argument.

	Default arguments (None is fine as value, btw) can be set using
keyword arguments, otherwise they get their default values.

	Keys with None values are omitted from the resulting dictionary
returned by to_api().

	
to_api()[source]

	Return our internal dictionary, but strip it of None values first.

Helper function for generating item definition documentation

	
lizard_structure.items.generate_docstring(name, bases, attrs)[source]

	Generate a docstring based on the class’s defaults/fixed attributes.

Use this function as a metaclass by adding __metaclass__ =
generate_docstring to every individual subclass of BaseItem.

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Project documentation

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	lizard-structure 0.2.dev0 documentation

Project documentation

Lizard-structure project documentation

Tagline of this app: structure of Lizard, defined and documented in a REST
interface.

[image: https://secure.travis-ci.org/lizardsystem/lizard-structure.png?branch=master]
 [https://travis-ci.org/lizardsystem/lizard-structure]
Most important project links

	Code is on github: https://github.com/lizardsystem/lizard-structure

	Documentation on readthedocs.org: https://lizard-structure.readthedocs.org/

	Tested on travis: https://travis-ci.org/lizardsystem/lizard-structure .

	Installable via pypi: http://pypi.python.org/pypi/lizard-structure .

Changelog of lizard-structure

0.2 (unreleased)

	Renamed “project” to “layer tree” because it is clearer.

	Added “item definitions” to properly document and specify items such as menu
headers and projects. Their end result is a dictionary that will be returned
as json by the API.

	Added lots of documentation, including documentation generated from the
docstrings. The docstring documentation is carefully managed so that the
documentation as a whole remains clear and logical to read.

	Renamed “application” to “data source” as “application” looks too much like
“Django application”. Inside Lizard, the icons in lizard-ui’s interface are
also called “application icons”, so we don’t use this overloaded term here.

	Using version from setup.py in the sphinx documentation.

0.1 (2012-12-05)

	Documented the four core Lizard concepts. [reinout]

	Set up documentation generation at https://lizard-structure.readthedocs.org/
. [reinout]

	Set up testing on travis:
https://travis-ci.org/lizardsystem/lizard-structure . [reinout]

	Removed lizard-ui dependency. [reinout]

	Initial project structure created with nensskel 1.30.dev0. [reinout]

Credits

	Reinout van Rees started this library.

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	lizard-structure 0.2.dev0 documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 lizard_structure	

 	
 	
 lizard_structure.items	

 	
 	
 lizard_structure.views	

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 Index

 Navigation

 	
 index

 	
 modules |

 	lizard-structure 0.2.dev0 documentation

Index

 A
 | B
 | D
 | F
 | G
 | H
 | L
 | O
 | T

A

 	

 	about_ourselves() (lizard_structure.views.DataSourceView method)

B

 	

 	BaseAPIView (class in lizard_structure.views)

 	

 	BaseItem (class in lizard_structure.items)

D

 	

 	DataSourceView (class in lizard_structure.views)

F

 	

 	FeatureView (class in lizard_structure.views)

G

 	

 	generate_docstring() (in module lizard_structure.items)

 	get() (lizard_structure.views.DataSourceView method)

 	

 	get_description() (lizard_structure.views.BaseAPIView method)

H

 	

 	HeadingItem (class in lizard_structure.items)

L

 	

 	layer_trees() (lizard_structure.views.DataSourceView method)

 	LayerItem (class in lizard_structure.items)

 	LayerTreeItem (class in lizard_structure.items)

 	LayerTreeView (class in lizard_structure.views)

 	

 	LayerView (class in lizard_structure.views)

 	lizard_structure.items (module)

 	lizard_structure.views (module)

O

 	

 	our_name_and_version() (lizard_structure.views.DataSourceView method)

T

 	

 	to_api() (lizard_structure.items.BaseItem method)

 Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		lizard-structure 0.2.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

code.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		lizard-structure 0.2.dev0 documentation »

Code documentation of the Django base views

The basic premise is that lizard-structure only shows a data source’s
structure. There are no edit actions, so no POST/PUT/DELETE: only GET.

There are several basic ways to deal with naming the views. Especially when
you also want POST/PUT/DELETE, having both ObjectList and ObjectDetail
makes sense. But we don’t need that. What’s most interesting are the lists,
these are also often the most effective. You don’t want to have to grab
handfuls of URLs before you can render a page. You want the most useful data
right away. So on an Data source page, you want a list of projects. On
a Project page, a list of layers. And so on.

We deemed it more useful to call the view with the list of projects the data
source view, though. A data source is a list of projects, so it makes sense
that way.

But: a project also has information on itself, as has a project, etc.

		
class lizard_structure.views.DataSourceView(**kwargs)[source]

		Information about the data source itself and its list of projects.

Use this to discover the projects you can show in your user interface. The
result is a dictionary with the following items:

		about_ourselves

		Metadata about ourselves, like the software version that generated
it. Do not depend on the actual items in here, just display them when
desired as background information.

		projects

		The list of available projects. A project is a collection of
layers you can show on a map or in an overview.

		
about_ourselves[source]

		Return metadata about ourselves.

		
our_name_and_version[source]

		Return name version number of our package.

		
projects[source]

		Return maptree categories.

Maptree categories are usable as root objects of lizard pages.

		
class lizard_structure.views.FeatureView(**kwargs)[source]

		Information about the feature and most importantly its representations.

		
class lizard_structure.views.LayerView(**kwargs)[source]

		Information about the layer and its list of features.

		
class lizard_structure.views.ProjectView(**kwargs)[source]

		Information about the project and its list of layers.

 © Copyright 2012, Reinout van Rees.
 Last updated on 2012-12-18.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_modules/lizard_structure/items.html

 Navigation

 		
 index

 		
 modules |

 		lizard-structure 0.2.dev0 documentation »

 		Module code »

 Source code for lizard_structure.items

(c) Nelen & Schuurmans. GPL licensed, see LICENSE.rst.
"""
:mod:`lizard_structure.items` provides item definitions. An item definition is
a formal specification of what kinds of key/value pairs you can expect in a
JSON object (or Python dictionary) for such diverse items such as a layer, a
menu item, a feature, a data source.

Technically, an item is nothing but a Python class that returns a
dictionary. It is implemented as a class for the following reasons:

- To make sure you comply to the specification. No undefined keys, no missing
 mandatory keys.

- To allow for default values.

- To make sure we can generate always-correct always-up-to-date documentation.

"""
from __future__ import unicode_literals

DEFAULT_HEADING_LEVEL = 1
EXPLANATIONS = {
 'name': 'Name of the item',
 'description': """Description of the item, perhaps shown when hovering
 above it. HTML tags are allowed so you can add links or definition links.
""",
 }

[docs]class BaseItem(object):
 """Base class for the other items.

 Flexible implementation so that we only have to specify the fixed and the
 default values (as dictionaries).

 - Fixed values cannot be set with a keyword argument.

 - Default arguments (``None`` is fine as value, btw) can be set using
 keyword arguments, otherwise they get their default values.

 - Keys with ``None`` values are omitted from the resulting dictionary
 returned by :meth:`to_api`.

 """
 fixed = {}
 defaults = {}

 def __init__(self, **kwargs):
 """Set up the item's internal dictionary.

 Keyword arguments can override default values. Only keys present in
 :attr:`defaults` are allowed as keyword arguments. You cannot add your
 own and you cannot override keys in :attr:`fixed`.

 """
 for kwarg in kwargs:
 if kwarg not in self.defaults:
 raise TypeError(
 "__init__() got an unexpected keyword argument {kwarg}",
 kwarg=kwarg)
 self._dict = {}
 self._dict.update(self.fixed)
 self._dict.update(self.defaults)
 self._dict.update(kwargs)

[docs] def to_api(self):
 """Return our internal dictionary, but strip it of None values first.
 """
 return dict([(k, v) for (k, v) in self._dict.items()
 if v is not None])

[docs]def generate_docstring(name, bases, attrs):
 """Generate a docstring based on the class's defaults/fixed attributes.

 Use this function as a metaclass by adding ``__metaclass__ =
 generate_docstring`` to every individual subclass of :class:`BaseItem`.
 """
 if not '__doc__' in attrs:
 plural = name.lower()[:-4] + 's'
 attrs['__doc__'] = "Item definition for {}".format(plural)
 docstring = []
 docstring.append('\n\n')
 if 'fixed' in attrs:
 docstring.append('Fixed values:')
 docstring.append('')
 for k, v in attrs['fixed'].items():
 docstring.append(k)
 explanation=EXPLANATIONS.get(k)
 if explanation is None:
 explanation = ''
 explanation += ' (**Fixed value**: {v}).'.format(
 v=repr(v))
 docstring.append(
 ' {explanation}'.format(explanation=explanation))
 docstring.append('')
 if 'defaults' in attrs:
 docstring.append('Available values:')
 docstring.append('')
 for k, v in attrs['defaults'].items():
 docstring.append(k)
 explanation=EXPLANATIONS.get(k)
 if explanation is None:
 explanation = 'Optional.'
 if v is not None:
 explanation += ' (**Default value**: {v}).'.format(
 v=repr(v))
 docstring.append(
 ' {explanation}'.format(explanation=explanation))
 docstring.append('')

 attrs['__doc__'] += '\n'.join(docstring)
 return type(name, bases, attrs)

[docs]class HeadingItem(BaseItem):
 """Wrapper/interface for heading objects in a Project/menu."""
 __metaclass__ = generate_docstring
 fixed = {'menu_type': 'heading'}
 defaults = {'name': None,
 'description': None,
 'heading_level': DEFAULT_HEADING_LEVEL,
 'extra_data': None,
 'klass': None}

[docs]class LayerItem(BaseItem):
 """Wrapper/interface for layer/acceptable objects in a Project/menu."""
 __metaclass__ = generate_docstring
 fixed = {'menu_type': 'workspace_acceptable'}
 defaults = {'name': None,
 'description': None,
 'wms_url': None,
 'wms_params': None,
 'wms_options': None,
 }

 © Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/up-pressed.png

restapi.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		lizard-structure 0.2.dev0 documentation »

The Lizard Portal API

This describes the resources that make up the Lizard API v1.

Portal

Get a Portal List

GET /api/v1/portals

Response

Status: 200 OK

{
 data: [
 {
 "id" : "{portal id}",
 "name": "{portal name}",
 "description": "{portal description}",
 "url": "/api/v1/portals/{portal id}"
 }
]
 count: 1
}

Get a Portal

GET /api/v1/portals/:portalid

Response

Status: 200 OK

{
 data: {
 "id": "{portal id}"
 "name": "{portal name}"
 "description": "{portal description}",
 "icon": "/api/v1/icons/4"
 "appScreenUrl": "/api/v1/portals/{portalid}/appScreen/"
 "links": [
 {
 "name": "{link name}",
 "url": "{link url}"
 },
],
 }
}

Application Screen

Get a list of Application Screens

GET /api/v1/portals/:portalid/appscreens/

Response

Status: 200 OK

{
 "data": [
 {
 "id": "{app id}",
 "name": "{app name}",
 "description": "{app description}",
 "url": "/api/v1/portal/{app id}",
 "icon": "/api/v1/icon/{icon id}",
 "actionType": "lizard.app.xxxxx"
 },
 {
 "id": "{app id2}",
 "name": "{app name2}",
 "description": "{app description}",
 "url": "/api/v1/portal/{app id2}",
 "icon": "/api/v1/icon/{icon id}",
 "actionType": "linkTo"
 }
],
 "count": 2
 }

Get a Application Screen

GET /api/v1/portals/:portalid/appscreens/:appscreenid

Response

Status: 200 OK

{
 "data": {
 "id": "{app id}",
 "name": "{app name}",
 "description": "{app description}",
 "url": "/api/v1/portal/{app id}",
 "icon": "/api/v1/icon/{icon id}",
 "actionType": "lizard.app.xxxxx"
 }
}

Applications

Get a list of Applications

Note

This seems to be the same as the Application Screen.

GET /api/v1/apps

Response

Status: 200 OK

{
 "data": [
 {
 "id": "{app id}",
 "name": "{app name}",
 "description": "{app description}",
 "url": "/api/v1/apps/{app id}",
 "icon": "/api/v1/icons/{icon id}",
 "actionType": "{lizard.app.xxxxx}",
 },
],
 "count": 1
}

The Lizard Datasource REST API

 © Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-21.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		lizard-structure 0.2.dev0 documentation »

 All modules for which code is available

		lizard_structure.items

		lizard_structure.views

 © Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_modules/lizard_structure/views.html

 Navigation

 		
 index

 		
 modules |

 		lizard-structure 0.2.dev0 documentation »

 		Module code »

 Source code for lizard_structure.views

(c) Nelen & Schuurmans. GPL licensed, see LICENSE.rst.
"""
The basic premise is that lizard-structure only *shows* a data source's
structure. There are no edit actions, so no POST/PUT/DELETE: only GET.

There are several basic ways to deal with naming the views. Especially when
you also want POST/PUT/DELETE, having both ``ObjectList`` and ``ObjectDetail``
makes sense. But we don't need that. What's most interesting are the lists,
these are also often the most effective. You don't want to have to grab
handfuls of URLs before you can render a page. You want the most useful data
right away. So on an :ref:`data source` page, you want a list of projects. On
a :ref:`project` page, a list of layers. And so on.

We deemed it more useful to call the view with the list of projects the data
source view, though. A data source *is* a list of projects, so it makes sense
that way.

But: a project also has information on itself, as has a project, etc.

"""
from __future__ import unicode_literals

from django.core.urlresolvers import reverse
from django.utils.translation import ugettext as _
from rest_framework.response import Response
from rest_framework.generics import GenericAPIView
import pkginfo

[docs]class DataSourceView(GenericAPIView):
 """
 Information about the data source itself and its list of projects.

 Use this to discover the projects you can show in your user interface.
 """

 @property
[docs] def projects(self):
 """Return maptree categories.

 Maptree categories are usable as root objects of lizard pages.
 """
 return []

 @property
[docs] def our_name_and_version(self):
 """Return name version number of our package.
 """
 our_module = self.__module__
 package = our_module.split('.')[0]
 version = pkginfo.installed.Installed(our_module).version
 return '{package} ({version})'.format(package=package,
 version=version)

 @property
[docs] def about_ourselves(self):
 """Return metadata about ourselves."""
 return {'generator': self.our_name_and_version}

[docs] def get(self, response, format=None):
 result = {}
 result['about_ourselves'] = self.about_ourselves
 result['projects'] = self.projects
 return Response(result)

[docs]class ProjectView(GenericAPIView):
 """
 Information about the project and its list of layers.
 """
 # Representation: some sort of sidebar structure/tree with menuitems or
 # workspaceacceptables.
 pass

[docs]class LayerView(GenericAPIView):
 """
 Information about the layer and its list of features.
 """
 # Representations: geojson, WMS, etc.
 pass

[docs]class FeatureView(GenericAPIView):
 """
 Information about the feature and most importantly its representations.
 """
 # Representations! flot, png graph, html, csv, etc.
 pass

 © Copyright 2012, Nelen en Schuurmans.
 Last updated on 2012-12-24.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/d